Assessing Accuracy of Genotype Imputation in American Indians
نویسندگان
چکیده
BACKGROUND Genotype imputation is commonly used in genetic association studies to test untyped variants using information on linkage disequilibrium (LD) with typed markers. Imputing genotypes requires a suitable reference population in which the LD pattern is known, most often one selected from HapMap. However, some populations, such as American Indians, are not represented in HapMap. In the present study, we assessed accuracy of imputation using HapMap reference populations in a genome-wide association study in Pima Indians. RESULTS Data from six randomly selected chromosomes were used. Genotypes in the study population were masked (either 1% or 20% of SNPs available for a given chromosome). The masked genotypes were then imputed using the software Markov Chain Haplotyping Algorithm. Using four HapMap reference populations, average genotype error rates ranged from 7.86% for Mexican Americans to 22.30% for Yoruba. In contrast, use of the original Pima Indian data as a reference resulted in an average error rate of 1.73%. CONCLUSIONS Our results suggest that the use of HapMap reference populations results in substantial inaccuracy in the imputation of genotypes in American Indians. A possible solution would be to densely genotype or sequence a reference American Indian population.
منابع مشابه
Estimation of genotype imputation accuracy using reference populations with varying degrees of relationship and marker density panel
Genotype imputation from low-density to high-density (SNP) chips is an important step before applying genomic selection, because denser chips can provide more reliable genomic predictions. In the current research, the accuracy of genotype imputation from low and moderate-density panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. The simulated popu...
متن کاملImputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method
The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...
متن کاملاهمیت خویشاوندی ژنتیکی و رکورد فنوتیپی بر صحت ژنومی دادههای جانهی شبیه سازی شده با استفاده از مدل های حیوانی در حضور اثرات متقابل ژنوتیپ و محیط
The objective of this study was to investigate the role of genetic relationships between training and validation set with considering different ratio of phenotypic records of training set on accuracy of genomic prediction via animal models containing genotype × environment interactions in simulated imputation data. For this purpose, four different scenarios using 15k density containing differen...
متن کاملEffect of Reference Population Size and Imputation Methods on the Accuracy of Imputation in Pure and Mixed Populations
Imputation as a method of creating low-density chips to high-density chips has been introduced to increase the accuracy of genomic selection in animals. In the current study, to investing imputation accuracy, three populations of mixed (scenario 1), pure (scenario 2) and mixed + pure (scenario 3) were simulated using QMSim. Two methods of imputation including Beagle and Flmpute were used fo...
متن کاملGenetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment
Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, ...
متن کامل